

Location

Bangor, NW Wales

University City with population of 17,500

In addition, 12,000 students

SENRGy is part of the College of the Natural Sciences

School of Ocean Sciences

School of Environment, Natural Resources & Geography

School of Biological Sciences

Our Environment

The School

Department of Forestry, 1904

School of Agricultural & Forest Sciences, 1986

School of Environment & Natural Resources, 2006

School of Environment, Natural Resources & Geography, 2009

About the school

Food security

Economy

Population & communities

Earth processes

Ecosystem services

A teaching & research partnership

- 350 undergraduates
- 40 masters students
- 65 research students
- 24 academic staff

Our undergraduate degrees

Environment

- BSc / MEnvSci Environmental Management
- BSc / MEnvSci Environmental Science

Natural Resource Conservation and Management

- BSc Agriculture, Conservation and Environment
- BSc Applied Terrestrial and Marine Ecology
- BSc Environmental Conservation
- BSc Conservation and Forest Ecosystems
- BSc Forestry

Geography

BA/BSc Geography

Our taught postgraduate degrees

- MSc Environmental Forestry
- MSc Agroforestry
- MSc Conservation and Land Management
- MSc Sustainable Tropical Forestry
- MSc Sustainable Forest and Nature Management
- MBA Environmental Management (with Bangor Business School)
- Distance Learning MSc (3) in Forestry, Tropical Forestry and Food Security in a Changing Environment (subject to validation)

The SENRGy team

Nutrients, GHG

Soil, carbon, microorganisms

Phosphorus, water quality

Forestry, compost science

Agroforestry, ecosystem services

Livestock production & reduction, pathogens

GIS

Catchments, hydrology, tracing

Socioeconomics

Soil erosion and conservation

Hydrological modelling

Climate change impacts

Crop genetics

Agronomy

LCA, Carbon footprinting

Modelling

Conservation and Bees

Mangrove function

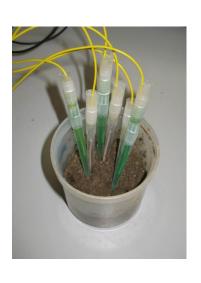
Conservation Biology

Research strengths: Production and Environment

- Livestock production
- Cropping and functional foods
- Manure management & nutrient utilisation

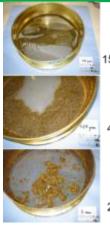
- Environmental pollution and mitigation (air, water)
- Soil science, nutrient and carbon cycling
- Whole system modelling (incl. LCA)

Agricultural Production


Producing lamb from different forages

Use of biochar and wood-ash as soil conditioners

Effect of sulphur supply on NUE of forage maize


Development of soil nitrate sensors

Environmental impacts of agriculture

Impact of prolonged flooding on soil quality

Fate of P in slove slurry particle fractions

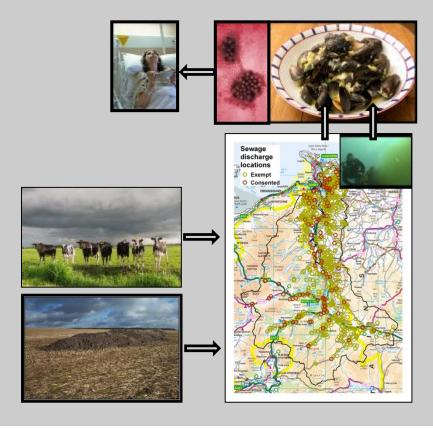
2000µm sieve

Methane mitigation from slurry stores

Nitrous oxide emissions and mitigation

Research Strengths: Food Safety & Pathogens in the Environment

Pathogens in the foodchain



E. coli 0157, Salmonella, Campylobact er

Catchment to coast

Catchment to coast approach

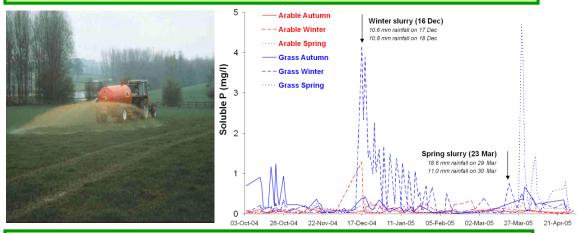
Approach not just for pathogens, but also nutrients

Eliciting expert perceptions of the efficacy and practicality of pathogen control measures: E. coli O157 and human health BANGOR

'Reducing Escherichia coli O157 risk in communities'

Soil and plant based strategies for achieving C neutrality in agriculture

Pollution and waste management


Land use effects on water quality

Erosion and runoff deliver soil and nutrients

Nutrient recycling can impact on water quality directly

Sources of nutrients in catchments are complex: multiple sources deliver nutrients in different forms via different pathways and spatio-temporal patterns.

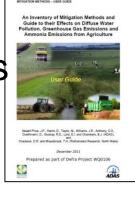
Bioreduction of dead livestock

Day 0

Day 23

Policy and Industry needs

sain



Nutrient Management

Guidelines

Diffuse Pollution
 Mitigation Guidelines

Policy and Practice Notes

 Food Safety Awareness in the Workplace

saln

Diolch yn fawr! Muchas gracias! Thanks!

